Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3396-3405, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196193

RESUMO

There is a crucial need for low-cost energy storage technology based on abundant sodium ions to realize sustainable development with renewable energy resources. Poly(vinylidene fluoride) (PVDF) is applied as a binder in sodium-ion batteries (SIBs). Nevertheless, PVDF is also known to suffer from a larger irreversible capacity, especially when PVDF is used as the binder of negative electrode materials. In this research, a poly(acrylonitrile)-grafted poly(vinyl alcohol) copolymer (PVA-g-PAN) is tested as a binder with Ti-based layered oxides as potential negative electrode materials for SIBs. The chemical stability tests of PVDF and PVA-g-PAN contacted with metallic sodium have been conducted, which reveals that PVDF experiences a defluorination process, while PVA-g-PAN demonstrates excellent chemical stability. Composite electrodes with PVA-g-PAN demonstrate superior electrochemical performances when compared with the PVDF binder, allowing improvement for initial CE, higher rate capability, and long cyclability over 1500 cycles. Detailed characterization of electrodes via soft X-ray photoelectron spectroscopy and field emission scanning electron microscopy demonstrates that the PVA-g-PAN branched structure allows a more uniform distribution of acetylene black with higher coatability, unlocking enhanced rate performances and efficient passivation of Ti-based oxides without the excessive electrolyte decomposition. These findings open a new way to design practical and durable sodium-ion batteries with a high-power density.

2.
ChemSusChem ; 17(3): e202301054, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37840019

RESUMO

All-solid-state-batteries (ASSBs) necessitate the preparation of a solid electrolyte and an electrode couple with individually dense and compact structures with superior interfacial contact to minimize overall cell resistance. A conventional preparation method of solid polymer electrolyte (SPE) with polyethylene-oxide (PEO) generally consists in employing uni-axial hot press (HP) to densify SPE. However, while uni-axial press with moderate pressure effectively densifies PEO with Li salts, excessive pressure also unavoidably results in perpendicular elongation and deformation for polymer matrix. In this research, to overcome this limitation for the uni-axial press technique, a cold isostatic press (CIP) is applied to the fabrication of ASSB with PEO and LiFePO4 . CIP effectively and uniformly applies pressure as high as 500 MPa without deformation. Characterizations confirm that CIP treated SPE has enhanced mechanical puncture strength, increasing from 499.3±22.6 to 539.3±22.6 g, and ionic conductivity, increasing from 1.04×10-4 to 1.91×10-4  S cm-1 at 50 °C. ASSB treated by CIP demonstrates remarkably enhanced rate capability and cyclability compared with the cell processed by HP, which is further evidenced by improvement of the apparent Li ion diffusion constant based on Sand equation analysis. The improvement enabled by CIP treatment originates from the superior interface uniformity between electrodes and SPE and from the densification of the LiFePO4 and SPE composite electrode.

3.
Commun Chem ; 4(1): 75, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-36697772

RESUMO

Carbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery.

4.
Nanoscale ; 12(42): 21780-21787, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103179

RESUMO

This study examines the synthesis and electrochemical performance of three-dimensional graphene for Li-ion batteries and Na-ion batteries. The in situ formation of iron hydroxide nanoparticles (Fe(OH)x NPs) of various weights on the surface of graphene oxide, followed by thermal treatment at elevated temperature and washing using hydrochloric acid, furnished 3D graphene. The characterization studies confirmed the prevention of graphene layer stacking by over 90% compared with thermal treatment without Fe(OH)x. The electrochemical performance of the 3D graphene was evaluated as a counter electrode for lithium metal and sodium metal in a half-cell configuration. This material showed good performances with a charging capacity of 507 mA h g-1 at 372 mA g-1 in Li-ion batteries and 252 mA h g-1 at 100 mA g-1 in Na-ion batteries, which is 1.4 and 1.9 times higher, respectively, than the graphene prepared without Fe(OH)x templates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...